International Journal of Theoretical Physics, Vol. 16, No. 106 (1977), pp. 77 5-793

Propositional Systems and Measurements. IIL.

Quasitensorproducts of Certain Orthomodular
Lattices’

K.-E. HELLWIG

Institut fiir Theoretische Physik der Technischen Universitit Berlin

and

D. KRAUSSER

Mathematisches Institut der Technischen Universitiit Berlin

Received: 29 September 1977

Abstract

Continuing our investigations on propositional systems without assumption of the cover-
ing law, we introduce a quasi-tensor-product of a complete atomic orthomodular lattice
with a complete atomic Boolean lattice. This product has a universal property with respect
to postulates on propositional systems of coupled physical systems. We use it to describe
measurements on a purely quantal object by a purely classical apparatus and find no
nontrivial propositionof the object to be commensurable with its quantal negation. If the
object is not purely quantal, the central propositions are commensurable. By this, it is
shown directly that useful apparatuses must have a quantal microstructure.

1. Introduction

In two preceding papers (1974a,b, henceforth cited as PSM 1and PSM 1I,
respectively), we have considered propositional systems for quantal objects
for which the covering law is not postulated. Moftives for doing so may be
found in PSM 1. If the covering law is absent, one cannot pass to Hilbert-space
representation. Therefore the structure of the propositional systems considered
by us is essentially weaker than that of the usual. The structure required by us
for a propositional system is that it is always a complete atomic orthomodular
lattice.

Since one does not have the linear structure of Hilbert-space for construct-
I Dedicated to the 60th birthday of Professor G. Ludwig
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776 HELLWIG AND KRAUSSER

ing tensor products, the problem arises how to form the propositional system
for a compound object, if the propositional systems of the component objects
are given. There are certain minimal requirements on the propositional system
of compound objects which we have formulated in lattice-theoretical language
as Postulate 5 in PSM II. Assuming that propositional systems exist that fulfil
these postulates, we have formulated measurement processes and derived some
consequences in PSM 1L

Writing the present paper, we found an error in the proof of Lemma 2 of
PSM II: The conjunctive normal form we assumed there to hold is not trivial
but wrong in general. Fortunately, we found another proof of the lemma, such
that the results of PSM II can be maintained. We give this proofin the
Appendix.

In the present paper we construct a propositional system 7 for the com-
pound of a quantal object with a complete atomic orthomodular lattice L as
propositional system and a “purely’ classical apparatus with a complete
atomic Boolean lattice B as propositional system.

We show T to possess a universal property with respect to Postulate 5. T can
be embedded into any other propositional system that fulfils Postulate 5 for
given L and B. We call T' the quasi-tensor-product B ® L of B and L. We have
called it a quasi-tensor-product because it is not a tensor product in the
categorical sense but has a similar universal property. Until now, we have not
succeeded in constructing such a propositional system in the case where B is
an arbitrary complete atomic orthomodular lattice.

For a quantal object with propositional system L and an apparatus with
propositional system B we then investigate measurement processes. We find
that the purely classical nature of the apparatus which we have to assume
imposes severe restrictions on the measurement possibilities: if the center of
L is trivial, then no proposition unequal to @ or I is commensurable with its
quantal negation. In the language of Ludwig (1970) this result can be stated
as follows: There are no decision effects. Therefore we have formally shown
that an apparatus defining decision effects, or, measuring propositions ideally,
must have a nonclassical microstructure behind the classical macrobehavior
which enters essentially into the measurement process. If L has a nontrivial
center Z, we show that the propositions in Z are commensurable and can be
measured together ideally by a “purely” classical apparatus.

In Section 2 we review shortly the contents of PSM 1l that we will use in
the present paper. The construction of the quasi-tensor-product is given in
Section 3. In Section 4, measurement processes are considered.

2. Summary of Results of PSM 11

Any measurement on a physical object by some physical apparatus pre-
supposes some coupling of both physical systems defining the compound
system. Let the propositional systems L of the object, and B of the apparatus,
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be given. What has to be required for the propositional system of the compound
system? In PSM II we have written the following postulate.?

Postulate 5.1. Let T denote the propositional system of a compound
system; then there are embeddings

0g:B~>T and 8;:L T

with the property 6 5(2%) =9, 8 1 (&) =2, 2 denoting the absurd pro-
position in any of the three propositional systems.

Postulate 5.2. Let b € B and a € L. Then 0 5(b) is compatible with

81 (a), for short 8 g(b) < 6 (2). If both b and a are nontrivial and
nonabsurd propositions, then neither 85(5) <8, (¢) nor 8;(a) <Ig(h)
holds.

Postulate 5.3. 1et there be given By & Band B; & L, Bg and By
being maximal boolean sublattices in B and L, respectively; then the
completion by cuts of the Boolean sublattice generated by

6p(Bg) U 01(By) is a maximal Boolean sublattice of T,

If such a propositional system 7 exists, measurement processes have been
described in PSM II as follows. Let b;,, € B denote the infimum of all pro-
positions imposed as true by the preparation of the apparatus when the measure-
ment process begins, b,,; € B the proposition that is finally to be observed and
concludes the measurement process. Let I/ denote the lattice automorphism of
T that describes the temporal development of the compound system from the
beginning of the measurement process up to the observation of 05 (boyut)-
05 (boyy) will then be true at the observation time if and only if m: = U1 (8 g(boyt))
is true at the beginning. Let

) ay:=lub. {a €L10,(a) A Op(bin) <m}
@) ag: =lub. {a €L16(a) A0g(biy) < ym}

where ¥ denotes the orthocomplementation in 7. Imagine now that a long
series of experiments has been carried out under the same conditions and by
has occurred in every single case. Then, by the very meaning of the order
relation in T, we have

0@y Nogbin)<m

and conclude @ to hold true for the ensemble of object systems. If b,,; has
not occurred in any single case, we have

0(ao) N Og(bin) < ym

In this case g is concluded to be true for the ensemble of object systems.
Different propositions in L, which may be detected by several different

2 Since we do not consider mainly questions in this paper, but only propositions, we do
not use the bracket notation as in PSM I or PSM I1.
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outcomes possible at the end of one and the same measurement process, are
called coexistent or, by the very meaning of the word, commensurable. For
example, a; is commensurable to ag.

In general, we do not have gy =ya;, but rather ay < pa, where ¢ denotes
the orthocomplementation in both B and L. In Theorem 3 of PSM II we have
proved that gy = gu; holds true, if and only if the three relations

(@) 0p(bin) o m
(i) 0.(a;) NOg(bin) =m A 0g(bin)
(ii) 01(ap) AOg(bin) = ¥m A 0p(bis)

hold. It is generally assumed in quantum theory that any propositionz in L is
commensurable with its quantal negation pa. Hence the existence of at least
one apparatus is assumed such that 4; =¢ and a4 = ¢a.

Another general assumption is that compatibility is equivalent to com-
mensurability. We have shown in Theorem 4 of PSM Il that commensurability
implies compatibility in our scheme, but we could not show formally that the
converse also holds.

In the sequel, an isomorphism or monomorphism is always understood to
be a bijective or injective lattice morphism, respectively, which is natural with
respect to the whole structure of propositional systems. We call any map that
preserves the lattice operations A and V a lattice morphism. By “embedding”
we mean a monomorphism that preserves arbitrary joins, and, since naturality
holds with respect to the orthocomplementation, it preserves arbitrary meets
100.

3. Construction of the Quasi-Tensor-Product

Our propositional systems are complete atomic orthomodular lattices. The
covering law is not assumed to hold. Hence there is no known procedure to
construct a propositional system T that verifies Postulate 5 with respect to the
given propositional systems B and L. So it is not clear whether such a T exists
in general.

We now construct such a 7 in the special case that one of the given proposi-
tional systems, say B, is Boolean.

Denote by o7 (V) the subset of atoms of some lattice N. Consider the set
A (B, L) of all mappings

f4(B)~L

For f, g €M (B, L) we write f< g if and only if fle) <g(e) for every e € Z(B).
Obviously, by this, #(B, L) is endowed with an antisymmetric partial ordering.
Let ¢ denote the orthocomplementation in L. We define

V. #(B, LY~ #(B, L)
freoeof
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Proposition 3.1. If L is a complete atomic orthomodular fattice and
Bis a complete atomic Boolean lattice, then 4 (B, L) is a complete
atomic orthomodular lattice. The orthocomplementation on #(B, L)
is given by .

Proof. Infima and suprema on arbitrary families {f;}recpr S # (B, L) are
obviously given by

N f B ~L
kex

e N\ file)
ke
and
Vo B ~1L
kex

e V file)
kex

Since L is complete, so is A4 (B, L). The lowest element of #(B, L) is given by
the mapping &/(B) — {&}, where @ denotes the lowest element in L. Analogously,
the greatest element of .# (B, L) is given by the mapping.o/(B) -~ {I }, where I
denotes the greatest element in L. Since no confusion arises, we denote these
mappings in .#(B, L) also by @, and I, respectively.

The relations (N Af=o, WV =L YE)<Y(f)ifg=f,and Y o Y(f)=f
are easy to check for f, g €.4(B, L) by inserting an arbitrary e € &/(B) into
the respective functions and finding the relations true in L. Analogously, one
shows that f<g implies g = f'V [{(f) Ag]. Hence .#(B, L) is orthomodular.

For any pair (eq, €) € A (B) x &/(L) define

Jeo,e: A B)~L

€ ife=ey

e -
@ otherwise

Jfeg, e is Obviously an atom in #(B, L). Now let f€ . #(B, L), f @, say f(¢) # @.

Since L is atomic, there is an € € /(L) such that & < f(2). Hence fzz</[. This

proves .# (B, L) to be atomic. N
Define now

7:L~M(B,L)

by r@)(e)=a,a €L, e € A (B);ie., 7(a) maps any e € #(B) intoa € L.
Moreover, define
g:B—~> #(B, L)

such that for b € B, o(b)(e) =1if e < b, and 6(b)(e) =z otherwise. Then we
have the following.

Proposition 3.2. 1 and o are embeddings of L and B into .#(B, L),
respectively, which fulfil postulates 5.1-5.3.
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Proof. The embedding property of 7 is obvious. Since B is assumed to be
complete, atomic, and Boolean, B is isomorphic to the lattice of subsets of
£ (B) in the natural way, which is isomorphic to the lattice of the character-
istical functions of /(B). But o(b), b € B, is nothing but the characteristic
function for the set of atoms {e € & (B)|e < b}, if the values {&, I} are
replaced by {0, 1}. In this way one easily infers that ¢ is an embedding. Since
1@y =z, 1) =1, 0(@)= 2, and o{l) = I, Postulate 5.1 holds.

We next show postulate 5.2 to hold. For the first part, we note that
A (B, L) is orthomodular. Hence we only have to prove the equation
[r@ Aa®)] V [r@) Ay o 0(b)] = 1(a),a €L, b €B, since then 7(g) < o(b)
by a well-known theorem (Piron, 1964). This is easily done by evaluating the
respective functions for arbitrary e € &/ (B), by recalling that o(b) takes only
values in {@,7} S L, and that o(b){e) = @ is equivalent to p o 6(b)(e)=1 In
order to show the second part, assume 7{¢) < ¢(b) to hold. Then r{g){e) =2 < a(b)(e)
for every e € o/(B). Hence ¢ ¥ @ implies o(b)(e) = I forevery ¢ € o/(B), ie.,
b =1 On the other hand b # I implies ¢ = . Assumption of o(b) < 7(a) leads
to similar results. Hence Postulate 5.2 has been proven.

We now have to show Postulate 5.3 to hold. This will be done by several
steps. For an arbitrary maximal Boolean sublattice B; of L let M denote the
Boolean sublattice generated by ¢(B) U 7(B; ) and let M denote the infimum
of all complete Boolean sublattices of .#(B, L) that contain M. Moreover let
N denote the set of functions in .4#(B, L) with range contained in By .

We show N =M. Let fEN, b €B, and ¢ € B, then f < o(b) and f ¢ 71(c),
such that we have the identity

f=f/\[ Vv o(a>}= V. [rAe@)

< H4(B) Fe(B)

= V(@) A o@)]
Few(B)
Since 7(f(&)) \ 0(&) EM, fEM. Hence N € M. Equality in the latter relation
is implied if N is a complete Boolean lattice that contains 6(B) U 7(B.). The
range of functions in o(B)} is in {@, I}, and the range of functions in A(By )isin
By ;thus o{B) U 7(B;) S N. Since B;, is maximal Boolean in the complete
lattice L, By, is complete, and, in consequence, NV is closed with respect to
arbitrary meets, joins, and the orthocomplementation ¢. Moreover, V is
Boolean.

We show & to be maximal Boolean in #(B, L). Let g € #(B, L),g  f for
any f €N then g < o(b) and g © 7{c) for any b € B and any ¢ €By,. Hence,
by the same argument as above showing us that N < M, we haveg €M =N.

In order to show that V equals the completion by cuts of M we use a result
of McLaren (1964, Theorem 2.5). A subset W of a partially ordered set S is
called join dense, if any element s € S is a finite or arbitrary infinite join of
elements of W. McLaren has shown that the completion by cuts of an
orthocomplemented lattice is isomorphic to the completion by cuts of any
join dense subset. Now 4 € M implies & < o(b) and i < 7(c) for any b €B and
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any ¢ € By, such that k is the union of {T(h(E)) A 0(¢) |2 € A(B)}, which is a
subset of M. Hence, the completion by cuts of # is isomorphic to the com-
pletion by cuts of M. On the other hand, the completion by cuts of the
complete lattice M coincides with M. So, for the completion by cuts M of M,
we have M =M = N. O

Corollary 3.3. (1) Let Z denote the center of L. Then the completion
of 7(Z) U o(B) is in the center of #(B, L). (2) In case Z is trivial,
a(B) coincides with the center of #(B, L).

Proof. Statement (1) holds true if (Z) U o(B) is in the center of #(B, L).
Now,g € .#(B, L) is in the center if fe) = [g(e) A fle)] V [pg(e) A fle)] holds
for any f€.4#(B, L) and any ¢ € o/ (B). For g € o(B) we have g(e) &€ {3, 1},
hence the equation is trivial. For g €7(2), i.e.,gle) =a, a € Z, for any e €/ (B),
the equation also is trivial since f(e) € L. Thus statement (1) is proved.

In order to prove statement (2) assume f € Z ,, Z , denoting the center of
M(B, L). Then f < g for any g € 4 (B, L) and, especially, fle) + g{e) in L for
any e € #(B). Since Z is supposed to be trivial, fle) € {z,1}. Hence f = o(a),
wherea: =V {e|f(e)=I1}inB. So Z; S o(B). But o(B) € Z 4 by statement
(1). Hence o(B)=Z . 3

We are now going to show that #(B, L) has a universal property with
respect to Postulates 5.1-5.3: (B, L) can be embedded into any lattice T
fulfilling Postulates 5.1-5.3 with respect to B and L.

Lemma 3.4. Let T be any complete atomic orthomodular lattice such
that embeddings

0p:B~>T  0,:L—>T

exist, which verify Postulates 5.1-5.3. Let A/ = o(27(B)) U 7( (L)).
Then any mapping &: A"~ T, for which the diagrams

&

N T

N AR

o (B) o (L)

are commutative, can be extended uniquely to a lattice monomorphism
a: A (B, LY~ T, which preserves arbitrary joins.

Proof. The atoms of #(B, L) are obviously the elements of the form
fe, e = a(e) A 7(e), (e, €) varying in o/ (B) x o (L). We have fee@®)=INe=¢
foré=e s fe,e(&) =g otherwise. Since # (B, L) is atomic, anny A (B, L) can
be represented by

=V

fe',e
Gres PF
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where .# is some suitable indexing set and (g;, €,) € o/ (B) x d (L) ¢ keJs.
Let £,: = {il(i k) € #, k suitable} and for any i € #, letf D=1{k|G k)E S,
i fixed}. The indexing sets can always be chosen in sucha manner that e;# ¢;
whenever i #7 (i, j € #,). Thus the representation of f can be written as

fzz‘e\/jl (ke\/;(z) Tes ek)

In the following, all indexing sets for elements f € #(B, L) are assumed to
be of that kind.
We.will show that a(f) is given by

afN= V  [@oo(e) Ao r(e)]
{, Knes
when f€ #(B, L) is represented by
= VYV lole)Arien)]
(i, rcs

We have to show that o) is defined independently of the particular representa-
tion and that a extends &.
We prove that a, if it is well defined, is an extension of &. We have

ao7(e) = ee\d/(B) [0(e) N6 L(e)]

=[ Vv eB<e)] Ay(e)=0; () =& o1(e)

eE€ A (B)
and, if {ex}xecxr < (L) is such a family that

\/ €k=1

kex

aoole)= V 105)A0L(e0)] =05(e) A { V eaek)} = 05(e) =0 o)
kex kex

The representation of 7(¢) by atoms is unique, hence ¢ is well defined on
7(oZ(L)). The representations of o(e) by atoms are easily seen all to be of the
form used above, hence a is well defined on o(#/(B)).

We now prove that « is also well defined on any other element of .#(B, L).
It is obviously well defined on the atoms of # (B, L), i.e., the elements repre-
sented uniquely by o(e) A 1{e), (e, €) € F(B) x 4 (L). In the general case,

assume
=V (V4 fei e = -
d ies \kesD 7k je\/fl m\e/%gj)fej»fm

Now f(e) # @if and only if there is an i € #; such that e = ¢;, and, analogeously,
there is a j € 'y, too, such that e = &;. Since we consider only indexing sets
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of the kind that i > ¢; and j > &; are injective, we conclude that there is a
bijection k : f; > A such that e; = &, ;) for alli € £, . Recalling the
property of functions f, ., we have

fle)= V V «(i) Em > e=¢;
ke

- Ek
.ﬁgl) me sy

Hence, using f, ¢, = o{e;) \ 7(€;) and Postulate 5.2, we deduce

V , [@oo(e) Naor(e)] =eB<ei)A[k;{6(i) eL(ek)}

kes )
=eB(e,-)/\{ V .o %(Em)}
meEx

= ;/f,(( ) [Ge U("—"K(z)) Ao 1(€,,)]
m
Forming the supremum over .#;, we have

VIV, [&oa(e,.)/\aw(ek)}] =V V  [@co@)AderE,)]

ics |kE S} jeH, mexy

which is the desired result that off) does not depend on the particular
representation of f.
Let there now be given an arbitrary family {g; }), c » S .#(B, L). The

relation
a(V gh)= V atz,)
he&#

hex

follows directly from the construction of a. Somewhat more involved is the

proof of
a( A gh) = N\ ofgy)
hewr hewr
We have, using Corollary 3.3,

A gk=(h/e\%gh)/\{ V cr(e)}= V [( A\ gh)/\o(e)}

hewx e EF(B) eE#(B)Y | \hEw

-V {/\ [gh/\o(e)}}

e€H(BY hewx

Let

WS n1 \kpe s p

g= V ( V o D ega))
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be a representation of g; by a supremum of atoms. Define

{exteex:= N e,gh)
hiper 'h

where

Z=U hrxsp)
nEx

If e # e for all k € A then there is an & € # such that g5 A o{e) =@. This
follows easily, recalling that

=V {o(e§;”) AL Vo r(ei’}})]}

in <
S I hEFn,2

As a consequence we have Ay =5 |25, A o(e)] = 2, hence

N g =V {/\ [gh/\a(ek)]}

hex kEAX | heH#

Let now denote ¢, : A > #), the injections defined through ez = eg:()k), ke,
hE€H . Then

gn A g(ek) = O{ek)/\[ V [tp(F)] T(f:",(j;l} i{

ﬂhEJ‘h,z
So we have
N g.=V [/\ {o(ek)/\( \% [eh<k)1'r(e,(f;z)))”
I3=F 4 kEX thew# nthh,z

Y/ {a(ek)/\{/\ ( V (L,,(km(ef,’;’)m

kex hEA\npEsp 2

=V V [o(ex) A 7(&F ,)C)]

kex mysx K

In the latter step we have put

/\ ': V [Lh(k)]'r(eg;))}: Vg{(k) T(@%‘i)

hext "hefh,2 mp€

Eﬁ,’fi)c € o7 (L), which is possible since L is atomic, and again used Corollary 3.3.

Now, by definition of «, we have

oz(/\ g,,)= VoV a0 A0LER)]

hex kex myex(k)
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On the other hand, we have

h R

N alg)= N\ { \Y leB(eEh A ( Vo h(e%,}))] }
hesxw heEH [in€ sy, kn€Esp2

Since the arguments just used to obtain the final expression for Ay, c 5 g,
in (B, L) also apply for computing N\, = algy,) in T, we find

/e\f(gh): kgf{eg(ekm{/\ ( V' eL(eﬁ’:?))”

h&eX \npcf hy

=V V(05 A0, @)

kex myex(®

which coincides with the expression we derived for a(\y e 81).

In order to show o o ¢ = Y o @, where ¢ denotes the orthocomplementation
in both, # (B, L) and T, we can restrict our consideration to atoms, since by
naturality of & with respect to arbitrary meets and joins the general case is then
implied. Let e € o/ (B), ¢ € A (L), then a o Y (6{e) A 7(€)) = e o o(e) V Y o 1(€)) =
aloople)Vrop(e))=bpop(e) VO, op(e)=y obipgle) Viob(e)=
Y(6gle) A dr(e)) =¥ o alo(e) A(e)), where ¢ denotes the orthocomple-
mentation in both B and L.

Since .#(B, L) is atomic orthomodular and ¢ o a = o Y, a is a mone-
morphism if the restriction on atoms is injective. Let ¢, &€ € o (B); ¢, E€ A(L).
Then o(e) A 7(e) # o(&) A\ 7(€) implies that one of the relationse A€ =g or
¢ N &= @ holds. Hence, 85(e) A 65(&)= @ or 0(e) A\ 6 (€) =, which in turn
implies 0g(e) A b1.(e) # 05(8) A\ 6 (%) since otherwise both sides could be
shown to equal zero. The latter cannot happen because of Postulate 5 holding
for g, 6; . Since afo(e) A 1(€)) = 6 g(e) A 8 (¢), the statement is proven. The
uniqueness of « is obvious by the definition of a. This concludes the proof of
Lemma 3.4. O

We now state the proposed universal property of the lattice 4 (B, L).

Theorem 3.5. Let T'be any complete atomic orthomodular lattice,
and 85: B~ T,80;:L - T be embeddings such that Postulates 5.1-5.3
are fulfilled. Then there is exactly one monomorphism a: # (B, LY—~>T
such that the diagram

R

M#(B, L)y ——> T

S

is commutative and « is natural with respect to the orthocomple-
mentation and arbitrary joins.
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Proof. Since &: A — T, defined by & o o(e): = 8z(e), ¢ € o7 (B), and
& o 1(e): = 67 (¢), e € (L), is the only mapping that makes the diagrams of
Lemma 3.4 commutative, the theorem is a direct consequence of Lemma 3.4.[]

Definition 3.6. Given B and L as above, .#(B, L) is called “quasi-
tensor-product of a complete atomic Boolean lattice B with the
complete atomic orthomodular lattice L, and will be denoted by
B & L.

B ® L can be understood as the unique class of isomorphic complete atomic
orthomodular lattices that is minimal in the sense of Theorem 3.5. In the
following section we apply this to measuring processes. Before doing so, we
mention some statements without proof for the special case where L is also
Boolean.

Proposition 3.7. Let B; (i = 1, 2) be complete atomic Boolean lattices.
Then B, ® B, is Boolean.

Proposition 3.8. Let B; (i = 1, 2) as above, then B; ® B, is isomorphic
to B, @ B, . Moreover, there exists an isomorphism from By ® B,
onto B, ® B which is natural with respect to the embeddings of B
and B, into these lattices, respectively.

The following proposition gives a hint that out construction is in accord with
classical point mechanics: the propositional system is the power set #(X) of
some set X, the phase space. Given another system with phase space Y, the
propositional system of the compound system is (X x Y).

Proposition 3.9. ?(X x Y) is isomorphic to 2(X) @ Z(Y).

4. Measurement Processes

We now continue the discussion that we began in the second part of
Section 2, keeping the notation introduced there. L denotes the propositional
system of a quantum object and B, which is Boolean, the propositional system
of the apparatus. The coupling between both is assumed to be the quasi-tensor-
product and is denoted by T.

We first assume that L has trivial center and show by the following pro-
position that there does not exist an apparatus with Boolean propositional
system which defines a nontrivial or nonabsurd proposition in common with
its quantal negation. Stated with the notation of PSM I and PSM II, such
purely classical apparatus cannot define a question a such thatp[a] = [va],
where [a] is the proposition holding true for all ensembles of objects for
which the outcome b, always occurs, and [va] is the proposition holding
true for all ensembles for which the outcome never occurs. Stated in the
language of Ludwig (1970), this result is that there is no purely classical
apparatus that defines a decision effect.

Since the structure that enters into the description of physical objects by
propositional systems is rather elementary, this proves by very general argu-
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ments that useful measurement apparatuses, which decide sharply between
the truth of a quantal proposition and the truth of its quantal negation, must
have a quantal microstructure behind their classical behavior with respect to
macroscopic observation.

Proposition 4.1. Let L have trivial center, ag,a; €L, by, bout € B,
by, # 9, boy ¥ @. Moreover, let U be an automorphism of T, and
let the relatons (j) and (jj) of Section 2 hold. Then a4 = ¢a, implies
a;€{w,l}ink

Proof. By Corollary 3.3 05(B) coincides with the center of T. Hence 65(b;y),
05 (bout), and m = U™ 0 O5(b o) are in the center of T. Since aq = pa, is
assumed, we have equalities (if) and (iii) of Section 2, which are

0r(a) N\ Og(bin) =m A 0g(bin)
01.(ao) A eB(bin) =ymA 8B(bin)

The left-hand sides are in the center of 7', too. So there are suitable elements
dy,do € B such that

0p(dy)=0y(a;) N Og(bin)
05(do) =01 (ag) A\ 8p(bip)
from which we conclude

0p(d1)<0r(ay), 0p(do) <07(ap)
Since

08(d1)V 05(do) = [m A Op(bin)] V [Ym A Og(bin)] =0p(bin) #2

0p(d1) # 2 or 85(dg) # @. By Postulate 5.2 the first case leads to 0 (a;) =1,
and the second to 67 (ag) =1 Since 2y = a4, the statement is proved.

We now assume L to have nontrivial center Z and generalize Proposition
4.1 showing that all elements of the center of L are commensurable. The
apparatus, which we will construct, has Boolean propositional system B.

We take B to be isomorphic to Z and identify both. This is possible since
Z is a complete atomic Boolean lattice. Then L can be represented as

L= @& [g,¢]

e € .J(Z)

where #/(Z) is the set of atoms of Z and square brackets denote formation of
segments. We introduce for e € /(Z)

)L ~[z,e]
abrela
Then we have for f€Z & L the formula

o=V @efle), eeo©)
€ 7 (2)
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which we will use freely in the following. Constructing a measurement process
in Z ® L showing the elements of Z to be commensurable, we have to fix an
element by, €Z, an isomorphism by :Z > Z, and an automorphism
UZ®L->Z®L,such that forany z € Z

7(2) A o(bin) = m(z) A o(byn)
and
(9(2)) A o(bin) = ym(z) A o(bip)

hold, where m(z): = U™ o g 0 byyi(z). The second equation can be dropped,
since the first will be proved for all z € Z and b,,,,; being an isomorphism. Then
detecting the proposition z € Z on the object system means that b, (2) has
occurred on the apparatus.

We first construct the mapping U ™ =: V. In order to do this, we make use
of the Lowenheim-Skolem-Tarski theorem (e.g., Gritzer, 1968): Any set
with cardinal number 2 is in bijection with some group of order . Hence,
we identify 2/(Z) with a suitable group of cardinality | #/(Z)| and denote the
group composition of ey, e; € A (Z) by ¢y - e.

Lemma 4.2. The mapping

VZRL~ZQL
defined by

nE=_V g 2of@)
e A(Z)
FEZ®L,e <€ /(Z),is an automorphism.

Proof. We prove injectivity. For any f€ Z ® L and arbitrary eq, ¢, € A (Z)
we have

(VP)leo - eit) =~e\.5

Geo er" &) o f(?)
(2)
hence the formula

9(eo) [Vfleo~ e1)] = T(eo) [f(e1)]

Since for g €Z ® L f # g holds if and only if fle,) # g{ey) for some e, €EA(Z),
and the latter being equivalent to §(eo)[f(e1)] # (eo) [gle1)] ., for some
eq € H(Z), injectivity is easily derived from the above formula.

We prove bijectivity for the restriction V| (z ¢ ): H(Z @ L)~> A (ZQL).
Recall that these atoms are given by the ““characteristic” functions fp_ ¢ ,
o€ A(Z),e0 € A (L) (cf. Section 3).

Letey,2€ A (Z),eq<ey,> andé=e, - eg'. Then, for e € A (Z)

Vere)O=_V e &) of., @)
ee w(2Z)
=q(e" eodeo = fo,e, (€)

3 Notice that atoms in Z are not necessarily atoms in L.
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since (¢ eq)(€g) F@if and only if e - ¢g = e, which implies e = & Let there
now be given &, and e, arbitrarily. Since we can find e, =27 - ¢,, where ¢,
is the unique ¢; € H(Z) with ey < ¢4, surjectivity of V on the atoms is proven.
Since V is injective, it is bijective.

By straightforward computation one shows ¥ to be natural with respect to
arbitrary meets and joins. Hence, V is a bijective lattice morphism.

We show naturality of ¥ with respect to the orthocomplementation, if ¥ is
applied to atoms of Z ® L. We have for e, e € oA(Z), €x € A (L)

Vo (e, @ = \/( G D ouf,, . @

( E) V [(e- e0) Aveo]
ged(ZN e, b

( )/\{ Vo e Ve
‘e M(Z) gea(Z)Me, }

olo(e - &) Aeg)
e W(Z)\{eo}

=0 N lhe-2)Ae)
ge s (Z)Me, }
Now let ¢; be the unique element of #(Z) withe; > g, ie. € Nole)y =2
and eq A () = €g, 8 F ey, & € (7). Hence
ife-eg=e,

N leled) Aegl = |

de A Z0\e,} o] otherwise

Let é:=¢, - eg'; then we have

Pepie) (€)= o e, (€)= /\ [o(e- &) A €]
A(Z0 e, }

Hence

Ve ’ﬁb(feo,eo): Yo V(feo,eo)

Summing up, we have found ¥ to be bijective and natural with respect to ¥
on the atoms of Z ® L, and, V is natural with respect to arbitrary meets and
joins. Since Z ® L is complete and atomic, we have found that V'is an
isomorphism. U

We now put by, = eq, g € H(Z). The following lemma states that there is
a unique isomorphism b1 Z = Z, such that, taking U™ = ¥, in M(Z, L) for
any z € Z the equation

(2) Noleg) = [U™ 0 0 0 bou(z)] N8(eo) )

holds true. o and 7 denote the embeddings of Z and L in #(Z, L). Hence,
relations (i)~(iii) of Section 2 hold for any z € Z.
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Lemma 4.3. The mapping & —> g - &, e € o (Z), induces a unique
automorphism of Z. Denote this automorphism by by ; then
equation (*) holds true. Conversely, b, is uniquely determined by

).
Proof. The mapping é - eg! - & is a bijection of #(Z), hence it induces an
isomorphism on Z.

For the remainder of proof we can restrict ourselves on the case z € &7(Z).
For z € /(Z) we have

[Veoles' - 8)] () Aaleo)(e)

=l Ve Ao &@] Noleo)e)

gen(2)
=[(e- eg' - &) A 1] A oleg) ()
=& N oleg)(e) =€) (e) A oleo) (e)

That b, is uniquely determined by (¥} is easy to check.
Summing up Lemma 4.2 and Lemma 4.3, we have shown the following.

O

Theorem 4.4. Let L be the propositional system of some quantum
object. The elements of the center Z of L are commensurable pro-

positions and can be measured together by an apparatus with Boolean
propositional system B = Z.

A trivial byproduct of this theorem is that all propositions of a classical
system are commensurable by an apparatus with Boolean propositional system.
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Apperndix

We will give a proof of Lemma 2 of PSM II. Before doing so, we propose
some statements that will be used.

Proposition A.1. Let B, and B, be Boolean sublattices of a complete
atomic orthomodular lattice T, and let B, © B,, i.e., the elements of
By U B, are mutually compatible. Then there is a Boolean sublattice

Bof Tsuchthat By < Band B, € B.
Proof. Let
M:={meTim=/\ @D Vb®),bPMecB, bPecB,,
rea

£ being a finite indexing set
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Obviously, B; € M and B, & M. Moreover, all elements of M are mutually
compatible since g, a, €T, k € A, A finite indexing set, 4 © a5, implies
aoNpeyayp anda< Ve ra; (eg., C. Piron, 1964, Theorem IX).

M is closed with respect to the orthocomplementation, We give the proof
by induction. We have for bV € B,, 5@ EB, Y(bVV pP) =
WhD A by = pM Vo)A (BV yb@). Now let bV €B, and P €B,,
n=1,2,3,.. . ,n9 % 1,and assume the statement to hold for n <n,. Then we
have

\p( N (b,(,l)Vb,(f)))=[/\ (z,mvz}”)]V(wbs,lgﬂ/\wbs,?n)

=1,2,..,n,+1 e

where b](l)éBl, b,(z) € B, and #is a finite indexing set. Hence

R BN R M RS
n= i

seamflgt1
= é\f (LG ¥y VB A BV BV yb4 1)1}

which has the desired form and is, hence, in M.

Since M is obviously closed forming finite meets, it follows that it is also
closed forming finite joins. Hence M is a Boolean sublattice of T containing
By and B, as sublattices. ]

Corollary. M is the Boolean sublattice of T, generated by By U B,.

The proof of the corollary is obvious and will be omitted. By a simple
Zorn lemma argument, which we also omit, one proves the following
proposition.

Proposition A.2. Let T be as above. For any ¢ € T there is a2 maximal
Boolean sublattice B, & T such that ¢ € B,.

We remark, that any maximal Boolean sublattice of T is complete (e.g.,
Piron, 1964, Theorem X).

We now recall some notation and results of McLaren (1964) which we will
use in the proof of the lemma. Let S be a partially ordered orthocomple-
mented set. We maintain our notation  for the orthocomplementation. For
a, b €S letalb be defined by a < Y(b). For any subset 4 € § let
A* = {sES|sLaforanya €A}, and A~ : =A™ The system L(S): =
{4 = 8|4 =477 of closed subsets of § is partially ordered by inclusion and
a complete lattice, for which infima equal to set theoretical meets. L(S) is
orthocomplemented by the mapping 4 ~ 4. The mapping S — L(S),

a —~ {a}" is an embedding. Moreover, L(S) can be identified with the comple-
tion by cuts of §.

Note that for one-elementary subsets of S the following formula holds:

{s}7={acSla<s}
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Let there now be given two complete atomic orthomodular lattices L and
L,. In Postulates 5.1-5.3 replace B by L and L by L,, and assume these

postulates to hold for a given complete atomic orthomodular lattice 7. The
embeddings of L and L, into T will be denoted by 9, and 8,, respectively.

Lemma 2 of PSM I Let e € o/ (L) and ¢ € &/ (L,). Then
84(e) A 8,(e) is an atom of T.

Proof. Let B, and B, be maximal Boolean sublattices of L and L,, res-
pectively, such that € € B, and e € B,. Then, for any b, €B,, b, # &, b, #1,
we have either e < b, or € < ¢b,, the latter being equivalent to b, < ype.
Analogously, we have for b, €B,, b, # @, b, #1, either e < b, o1 b, < ye.

Let M denote the Boolean sublattice generated by 8 ,(B.) U 0,(B,)in T.
From the proof of Proposition A.1 we know that any element m €M can be
written in the form

m= I\ [8,$O)V 0,09)]
reR

where b$®) € B, and b{®) € B,, # being a finite indexing set. Let m # 2, and
m # I. Without restriction of generality we can then assume that b$€) # I and
b,(,e) #1, r € @, since the respective terms do not contribute to m. Moreover,
the case that b¢¢) = g and b€ = gis excluded, since then m = @ would hold.
We show that for each » € £, separately, one of the two alternatives

61 (B V 0,(b5) <81(pe) V 8,(pe)
or

015NV 02(5)>8,(e) A b,(e)
holds. The first alternative arises if both b$¢) < e and 5{¢) < pe hold true.
The second arises otherwise. Consider now m €M, m # &, m # I and assume a

representation of the above form. If the first alternative arises for some r € 4,
we have

m=/\ " [0;B$NV 8,05 <0,(pe) V 05 (ve)
rex
If the first alternative arises for no r € #, we have
m= I\ [0,V 0,08N] >0,(6)Ab1e)
re#

Thus we have proven that in M there are no nonabsurd elements that precede
01(e) ANb,(e).

We are now going to show the latter statement to hold also for the comple-
tion of M by cuts. To that end let 7 € L(M), 7 # {2}~ and assume that there
is no element m; € /i such that m; 22 0 1(€) A 9,(e). Then m; <0,(pe)V
8 (e} for any M1 € m. Hence, we have

M <{0;(pe)V0,(ve)}~
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Assume now, on the contrary, that there is an element m, € /i such that
my 2 01(e) A 65(e). Then

{81(e) N2 (e)} < {my} <7

Identifying now L{(M) with the completion by cuts of M, we have for
m# {@} either

< Y0,(e) \b,(e)) orm = 0,(e)\d,(e)

Since the completion by cuts of M is postulated to be maximal Boolean in T,
atoms in L{M) must also be atoms in 7. This completes the proof of Lemma 2
of PSM II.
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